Courtesy Reuters

Farming the Genetic Frontier

Purchase Article


For more than ten thousand years, farmers have improved their crops by letting nature do the breeding and then choosing the tastiest, hardiest, or most productive offspring. This ancient technique was accelerated in the last century through more systematic attempts to oversee the breeding and selection process. Today, however, new scientific techniques are making it possible to design crops with far greater precision and effect than ever before.

The most controversial and important of these techniques are called "transgenic": they allow scientists to engineer new crops by splicing together particular genes rather than relying solely on the uncertain crosses that are the hallmark of traditional crop breeding. For some, the transgenic revolution in biotechnology is a horror. Tinkering with nature's order, they argue, will backfire when engineered genes escape to the wild and disrupt delicately balanced ecosystems. For others, plant engineering is a Promethean step forward that will lead to more nutritious, productive, and disease-resistant crops, which will in turn help alleviate global hunger and reduce the amount of land and pesticides used in agriculture.

The optimists are right about the promise of biotechnology. But in their eagerness to see new crops deployed, the most zealous advocates pretend that genetic engineering is similar to prior agricultural innovations, ignoring the fact that there are indeed substantial differences that call for new types of regulatory oversight. At the other extreme, a vocal minority of detractors has hyped the risks of crop engineering all out of proportion to reality and

Log in or register for free to continue reading.

Registered users get access to one free article every month. Subscribers get access to the entire archive.

Browse Related Articles on {{}}

{{ | number}} Articles Found

  • {{bucket.key_as_string}}