×

The Democratization of Space

New Actors Need New Rules

Flying private: a SpaceX cargo ship, April 2014 NASA

Starting with the Soviets’ launch of Sputnik in 1957, early space missions were funded exclusively by national governments, and for good reason: going to space was astronomically expensive. Setting up a successful space program meant making major investments in expertise and infrastructure, along with tolerating a great deal of risk—which only the superpowers could do. NASA’s Apollo program, for instance, employed 400,000 people, cost more than $110 billion in today’s dollars, and resulted in the death of three skilled astronauts. Not surprisingly, then, the legal framework that developed as the space race intensified was government-centric. In 1967, the United States, the Soviet Union, and many other countries signed the Outer Space Treaty, which set up a framework for managing activities in space—usually defined as beginning 62 miles above sea level. The treaty established national governments as the parties responsible for governing space, a principle that remains in place today.

Half a century later, however, building a basic satellite is no longer considered rocket science. Thanks to the availability of small, energy-efficient computers, innovative manufacturing processes, and new business models for launching rockets, it has become easier than ever to launch a space mission. These advances have opened up space to a crowd of new actors, from developing countries to small start-ups. In other words, a new space race has begun, and in this one, nation-states are not the only participants. Unlike in the first space race, the challenge in this one will not be technical; it will be figuring out how to regulate this welter of new activity.

FREE-FOR-ALL

Computing gets much of the credit for lowering the barriers to entry to space. The modern smartphone is the product of three-plus decades of advances in circuit design and fabrication techniques, and today’s processors pack 1,000 times as many transistors as their predecessors did 20 years ago. The iPhone 6 has as much computational power as a supercomputer from the 1990s did. Smaller also means more energy efficient: a typical cell phone will draw just 25

Loading, please wait...

Related Articles

This site uses cookies to improve your user experience. Click here to learn more.

Continue