Simulating eXtreme Spacetimes The truth is out there: a simulation of black holes, released at a conference in February 2016

How to Maintain America’s Edge

Increase Funding for Basic Science

Purchase Article

In February 2016, scientists from the Massachusetts Institute of Technology (MIT) and the California Institute of Technology, or Caltech, joined with the National Science Foundation (NSF) to share some remarkable news: two black holes 1.3 billion light-years away had collided, and the resulting gravitational waves had been “heard” by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO). This was the first time such waves—ripples in the space-time continuum caused by the violent acceleration of massive objects—had ever been directly observed. Albert Einstein had predicted such waves a century ago, but it was long doubted that instrumentation sensitive enough to confirm their existence could ever be created. It took more than four decades of work by a vast team of scientists to make the impossible possible.

LIGO has revealed thrilling new insights into the cosmos—but it has given the world some gifts of immediate practical value as well, which help illustrate the benefits of such investments in basic science. Over the years, the LIGO project has provided a crucial training ground for thousands of top young scientists and engineers, developing talent that has energized not only American universities but also American businesses. Because LIGO researchers had to measure displacements of mirrors one-10,000th the size of a proton, they were required to invent an array of breathtakingly precise new tools, including ultrastable high-powered lasers, ultrasmooth mirrors mounted on ultraquiet vibration-isolation platforms, the world’s largest ultrahigh-vacuum system, and software algorithms for extracting tiny signals from noisy data. Some of these technologies are already beginning to be used in commercial manufacturing. And if history is any guide, LIGO will lead to important innovations far down the road—just as 1940s experiments with nuclear magnetic resonance led to the MRI scanner, a 1950s effort to create clocks to measure how gravity warps time made possible GPS, and research in the 1960s and 1970s gave the world the Internet. 

LIGO, in short, is extraordinary. But it is also typical, because it highlights

Browse Related Articles on {{}}

{{ | number}} Articles Found

  • {{bucket.key_as_string}}